COLLABORATION FOR SUSTAINABILITY AND INNOVATION

Presentation to ATPS Conference
Dr. Caroline S. Wagner
John Glenn School of Public Affairs
The Ohio State University

November 2012

SUSTAINABLE/ INNOVATION

- Outline sustainable innovation
- Discuss options for growth, obstacles hindering growth
- Present vision of tapping knowledge network
 - Where and how to connect
 - Taking inventory
 - Making knowledge stick locally-absorbing, using
- Measuring success

INNOVATION/SUSTAINABILITY CAN APPEAR TO BE AT ODDS

- Innovation is new product, process, or idea, or an existing entity applied in a new way
- Useful for economic and/or social welfare
- Inherently de-stabilizing, creates temporary inequities
 - Public policy is needed to address this question
- Can be difficult to apply sustainability principals
 - "Creative destruction of technological change"
- Overall growth come from reliable knowledge applied in transparent and transformative ways

UNDERSTANDING STI

Technology

Technology in use (products, processes, designs)

Human Resources

- Trained workers available
- Training opportunities available

Institutions

- Standards organizations
- Research institutes and research funds
- Incubators and finance

Collaborative Capacities

Communication, coordination, cooperation

- **Extension Services**
- Professional societies
- Conferences and workshops

Knowledge Resources

- Technical reports and scientific papers
- Regulations and laws
- Indigenous know-how

STEPS TOWARDS KNOWLEDGE BASE

- Where are we coming from with S&T?
 - Existing capacity
- Where do we want to go?
 - Improved efficiency and productivity
- Do we know how to get there?
 - THICK
- How will we know when we have arrived?
 - In industry sell products, processes, services

FOSTERING COLLABORATION

- C = Linkages (e.g., extension services, ICT access, collaborations, S&T communication in government, media, business associations, professional societies, public awareness, etc.)
- Findings regarding knowledge flows:
 - Industry-university-policy links weak
 - Example: Metrology, Standards, Testing, Quality
 - Pieces in place; but insufficient interaction and feed-back
 - Cross-sectoral linkages
 - User- and producer-driven?
 - Stakeholder involvement

MAKING KNOWLEDGE STICK LOCALLY

Are appropriate incentives in place to encourage communications?

- Fish sector recovery in Uganda
 - Awareness of European market standards
- Energy sector development in Uganda
 - Possibility of producing oil and natural gas for world market
- Public health research in Mozambique
 - Working together with local communities to identify needs
- Cashew nuts in Mozambique
 - Role of processors in improving producers' technology
- Pharmaceutical manufacturing in Uganda
 - Connections between local workers and global training
- Maputo corridor logistics initiative
 - Improving a wider network infrastructure around corridor
- Biotechnology cluster initiative
 - Funding to solve local health problems, creating local connections

CONCLUSIONS

- Positive capabilities need to be nurtured
- Investment strategies should build on existing strengths
- Communications strategies should look globally, across the continent, and regionally
 - Where to stick locally
- Extension services should include local stakeholders
- Coordination should occur in research capacity building with other countries

TIME LINE OF INVESTMENTS

CHANGING LANDSCAPE

- 1990 → 6 countries contributed 90 % R&D
- 2008 \rightarrow 13 countries (not inc. EU)
- Global \$ on R&D → 2 % world GDP ~\$1.1 trillion
- Developing countries doubled R&D spending
- Number of researchers 5.7 million (2002) to 7.1 million (2007)

CONTINUING RISE IN SCIENCE

						Addresses,	Percent of	
ı					International-	international	international-	
		Unique			ly co-	ly co-	ly co-	
ı		documents	Addresses in	Authors for	authored	authored	authored	
Ľ	Year	in SCI	the file	all records	records	records	records	
	2011	1,042,654	2,708,877	6,107,758	361,761	1,359,068	34.7	
L	2005	986,831	1,696,042	3,301,251	171,402	618,928	17.4	
Y	2000	778,446	1,432,401	3,060,436	121,432	398,503	15.6	
	1990	590,841	908,783	1,866,821	51,596	147,411	8.7	

SCIENCE KEEPS GROWING

- Scientific research publications growing in number
- Sources are proliferating
 - Open source journals
 - E-journals
 - National, disciplinary sources
- Pre-publication venues (e.g., arXiv)
- Data to fuel science is also growing spectacularly!
- Growth in itself now new... variety of sources is new

Just how big is "science"?

GLOBAL LINKS 1996-2003

Calculated by Elsevier from Scopus data – Royal Society

7 years

GLOBAL LINKS 2, 2004-2008

4 years

Calculated by Elsevier from Scopus data – Royal Society

COLLABORATION, NETWORKING

- S&T shifted to global system
 - System is open in true sense of open systems
- New venues for collaboration, knowledge transfer
- Networks augmenting institutions
- Link and sink knowledge, creating collaborative teams
- Find each other using Internet, organizations like Global Knowledge Initiative