COLLABORATION FOR SUSTAINABILITY AND INNOVATION

Presentation to ATPS Conference
Dr. Caroline S. Wagner
John Glenn School of Public Affairs
The Ohio State University

November 2012
• Outline sustainable innovation
• Discuss options for growth, obstacles hindering growth
• Present vision of tapping knowledge network
 • Where and how to connect
 • Taking inventory
 • Making knowledge stick locally-absorbing, using
• Measuring success
INNOVATION/SUSTAINABILITY CAN APPEAR TO BE AT ODDS

- Innovation is new product, process, or idea, or an existing entity applied in a new way
- Useful for economic and/or social welfare
- Inherently de-stabilizing, creates temporary inequities
 - Public policy is needed to address this question
- Can be difficult to apply sustainability principals
 - “Creative destruction of technological change”
- Overall growth come from reliable knowledge applied in transparent and transformative ways
UNDERSTANDING STI

• **Technology**
 - Technology in use (products, processes, designs)

• **Human Resources**
 - Trained workers available
 - Training opportunities available

• **Institutions**
 - Standards organizations
 - Research institutes and research funds
 - Incubators and finance

• **Collaborative Capacities**
 - Communication, coordination, cooperation
 - Extension Services
 - Professional societies
 - Conferences and workshops

• **Knowledge Resources**
 - Technical reports and scientific papers
 - Regulations and laws
 - Indigenous know-how
Steps towards knowledge base

• Where are we coming from with S&T?
 • *Existing capacity*

• Where do we want to go?
 • *Improved efficiency and productivity*

• Do we know how to get there?
 • **THICK**

• How will we know when we have arrived?
 • In industry – *sell products, processes, services*
FOSTERING COLLABORATION

• **C = Linkages** (e.g., extension services, ICT access, collaborations, S&T communication in government, media, business associations, professional societies, public awareness, etc.)

• **Findings regarding knowledge flows:**
 • Industry-university-policy links weak
 • *Example: Metrology, Standards, Testing, Quality*
 • Pieces in place; but insufficient interaction and feedback
 • Cross-sectoral linkages
 • User- and producer-driven?
 • Stakeholder involvement
MAKING KNOWLEDGE STICK LOCALLY

Are appropriate incentives in place to encourage communications?

- Fish sector recovery in Uganda
 - Awareness of European market standards
- Energy sector development in Uganda
 - Possibility of producing oil and natural gas for world market
- Public health research in Mozambique
 - Working together with local communities to identify needs
- Cashew nuts in Mozambique
 - Role of processors in improving producers’ technology
- Pharmaceutical manufacturing in Uganda
 - Connections between local workers and global training
- Maputo corridor logistics initiative
 - Improving a wider network infrastructure around corridor
- Biotechnology cluster initiative
 - Funding to solve local health problems, creating local connections
CONCLUSIONS

• Positive capabilities need to be nurtured

• Investment strategies should build on existing strengths

• Communications strategies should look globally, across the continent, and regionally
 • Where to stick locally

• Extension services should include local stakeholders

• Coordination should occur in research capacity building with other countries
TIME LINE OF INVESTMENTS

Field or Sector: __Agro-processing__

R&D

STØ

RSTE

Plant speciation

Botany Departments

Traceability & assurance

1 year

5 years

10 years
• 1990 ➔ 6 countries contributed 90 % R&D
• 2008 ➔ 13 countries (not inc. EU)
• Global $ on R&D ➔ 2 % world GDP ~$1.1 trillion
• Developing countries doubled R&D spending
• Number of researchers - 5.7 million (2002) to 7.1 million (2007)
CONTINUING RISE IN SCIENCE

<table>
<thead>
<tr>
<th>Year</th>
<th>Unique documents in SCI</th>
<th>Addresses in the file</th>
<th>Authors for all records</th>
<th>Internationally co-authored records</th>
<th>Addresses, internationally co-authored records</th>
<th>Percent of internationally co-authored records</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1,042,654</td>
<td>2,708,877</td>
<td>6,107,758</td>
<td>361,761</td>
<td>1,359,068</td>
<td>34.7</td>
</tr>
<tr>
<td>2005</td>
<td>986,831</td>
<td>1,696,042</td>
<td>3,301,251</td>
<td>171,402</td>
<td>618,928</td>
<td>17.4</td>
</tr>
<tr>
<td>2000</td>
<td>778,446</td>
<td>1,432,401</td>
<td>3,060,436</td>
<td>121,432</td>
<td>398,503</td>
<td>15.6</td>
</tr>
<tr>
<td>1990</td>
<td>590,841</td>
<td>908,783</td>
<td>1,866,821</td>
<td>51,596</td>
<td>147,411</td>
<td>8.7</td>
</tr>
</tbody>
</table>
SCIENCE KEEPS GROWING

• Scientific research publications growing in number

• Sources are proliferating
 • Open source journals
 • E-journals
 • National, disciplinary sources

• Pre-publication venues (e.g., arXiv)

• Data to fuel science is also growing spectacularly!

• Growth in itself now new… variety of sources is new

Just how big is “science”?
7 years
Collaboration, Networking

- S&T shifted to global system
 - System is open – in true sense of open systems
- New venues for collaboration, knowledge transfer
- Networks augmenting institutions
- Link and sink knowledge, creating collaborative teams
- Find each other using Internet, organizations like Global Knowledge Initiative